

LISTSERV Maestro Admin Tech Doc 9

Securing Access with
HTTPS

September 29, 2021 | © L-Soft Sweden AB
lsoft.com

This document is a LISTSERV Maestro Admin Tech Doc. Each admin tech doc documents a certain
facet of the LISTERV Maestro administration on a technical level. This document is number 9 of the
collection of admin tech docs and explains the topic “Securing Access with HTTPS”.

Last updated for LISTSERV Maestro 10.0-1 on September 29, 2021. The information in this document
also applies to later LISTSERV Maestro versions, unless a newer version of the document supersedes
it.

Information in this document is subject to change without notice. Companies, names, and data used
in examples herein are fictitious unless otherwise noted. L-Soft Sweden AB does not endorse or
approve the use of any of the product names or trademarks appearing in this document.

Permission is granted to copy this document, at no charge and in its entirety, provided that the
copies are not used for commercial advantage, that the source is cited, and that the present
copyright notice is included in all copies so that the recipients of such copies are equally bound to
abide by the present conditions. Prior written permission is required for any commercial use of this
document, in whole or in part, and for any partial reproduction of the contents of this document
exceeding 50 lines of up to 80 characters, or equivalent. The title page, table of contents and index, if
any, are not considered part of the document for the purposes of this copyright notice, and can be
freely removed if present.

Copyright © 2003-2021, L-Soft Sweden AB
All Rights Reserved Worldwide.

LISTSERV is a registered trademark licensed to L-Soft international, Inc.
L-SOFT and LMail are trademarks of L-Soft international, Inc.
CataList and EASE are service marks of L-Soft international, Inc.
All other trademarks, both marked and not marked, are the property of their respective owners.
Some portions licensed from IBM are available at http://oss.software.ibm.com/icu4j/
This product includes code licensed from RSA Security, Inc.
This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

All of L-Soft's manuals are also available at: http://www.lsoft.com/manuals.html

L-Soft invites comment on its manuals. Please feel free to send your comments by e-mail to:
MANUALS@LSOFT.COM

http://www.lsoft.com/manuals.html
mailto:MANUALS@LSOFT.COM

 iii

Table of Contents

1 Secure Access with HTTPS ... 1

2 Introduction to Secure Communication ... 1

3 The Trusted Root Certificate Keystore ... 4

3.1 Secure the Trusted Root Certificate Keystore .. 4

4 Let LISTSERV Maestro Manage the Certificates .. 5

4.1 Preconditions for Using Automatic Let’s Encrypt Certificates .. 5

4.2 Secure an IP Address With an Automatic Let’s Encrypt Certificate 6

4.2.1 Troubleshoot Port 80 Problems .. 7

4.2.2 Modify an Existing Let’s Encrypt Certificate ... 9

5 Manage Certificates Manually ... 9

5.1 The keytool Tool ... 9

5.2 Install a Server Certificate ... 9

5.2.1 Create and Install a New Server Certificate .. 10

5.2.1.1 Create an Unsigned Server Certificate ... 10

5.2.1.2 Perform a Certificate Signing Request (CSR) .. 12

5.2.1.3 Install the Signed Server Certificate ... 13

5.2.1.3.1 Troubleshoot Certificate Import Problems ... 13

5.2.2 Install an Existing Server Certificate .. 15

5.2.2.1 Existing Certificate in a Java Keystore .. 15

5.2.2.2 Existing Certificate in X.509 Certificate Files or PKCS12 Format 15

5.2.2.2.1 Existing Certificate in Separate X.509 Certificate Files, Plus Private Key File...... 16

5.2.2.2.2 Existing Certificate in Single X.509 Certificate File, Plus Private Key File 16

5.2.2.2.3 Existing Certificate in Single PKCS12 File ... 17

5.2.2.3 Check the Root CA Certificate .. 17

5.2.3 Install a New Trusted Root Certificate .. 18

5.2.4 Verify the Certificate Keystore .. 19

5.3 Make LISTSERV Maestro aware of the Server Certificate .. 20

5.3.1 Secure All IP Addresses with HTTPS .. 21

5.3.2 Secure Only Some IP Addresses with HTTPS ... 22

5.3.3 Define the HTTPS Port ... 23

5.3.4 Configure the Access URLs .. 24

5.3.5 Redirect from HTTP to HTTPs .. 24

 iv

5.4 Refresh an Expired Certificate .. 25

5.4.1 Create a New Certificate ... 26

5.4.2 Re-use the Existing Certificate .. 26

6 Support for HTTP Strict Transport Security (HSTS) 27

7 Supported SSL/TLS Ciphers ... 28

8 Minimum TLS Protocol Version .. 32

LISTSERV Maestro Admin Tech Doc 9 1 Securing Access with HTTPS

1 Secure Access with HTTPS

LISTSERV Maestro is accessed by the user with a web browser over the network, often even over
unsecure networks like the internet.

And on the internet, network traffic as such is a public affair: Anyone with the right knowledge and
access to certain nodes in the network may “listen in” on the communication between the user’s
browser and the LISTSERV Maestro server.

Such an attacker may gain knowledge about the data that is sent to the user’s browser (for display)
and sent back to the server (to trigger a certain action or to submit settings the user made). Even
more dangerous, the attacker can find out the user name and password that the user or
administrator uses for login, and can then log in himself with the same account.

In this day and age, running a web application like LISTSERV Maestro over an unsecure channel can
no longer be considered state of the art. Instead, access should be encrypted using the HTTPS
protocol.

The following sections describe how you can configure your LISTSERV Maestro server(s) to use
HTTPS. Also, since the topic of encryption, server certificates, trusted authorities etc. is quite
complex, an introduction is given that helps you understand the concepts involved, so that you can
execute the required steps on an informed basis.

Note: Securing access with HTTPS as described in this tech doc is a separate issue in comparison to
authenticating and encrypting communication between the components of LISTSERV Maestro, even
though the two have many similarities and can even be combined. If what you are looking for is
actually to authenticate and encrypt the communication between the separate components of
LISTSERV Maestro (and not the communication between the user and the Maestro User Interface or
Administration Hub) then please see “LMA Admin Tech Doc 5 – Multi Server Installation” instead.

2 Introduction to Secure Communication

Note: If you are only interested in the technical details of how to configure LISTSERV Maestro for
HTTPS, then you can skip this general introduction section.

This section shall give you a short introduction about the basics of secure communication. Please see
the many publications about this topic for more details.

Basically, for encrypted communication, the only thing that is required is, that both communication
partners know the encryption key, so that the receiving partner may decrypt the data that was
encrypted by the sending partner.

With online communication however, this is a bit more complex. After all, both partners (i.e. the
browser and the server), which may even communicate with each other for the first time, do not
have a common encryption key that is known only to them (or if you wanted to do this, you would
have to give every server/browser combination in the world a unique encryption key, which is
obviously impossible).

So when the connection is first established, the two partners decide “on the fly” on an encryption
key that is used for the rest of the communication (this is a simplified view of the matter, but it
explains the basics).

OK, let’s assume that the two partners have decided what key to use, so they can now communicate
in an encrypted manner.

LISTSERV Maestro Admin Tech Doc 9 2 Securing Access with HTTPS

There still is a problem: How can the two partners be sure that they are actually communicating with
the partner they think they are communicating with?

An analogy to this problem can be found in real life: Let’s say that two employees of two partner
companies meet in a hotel to exchange confidential information. The two have never met each
other, but they know each other’s names and home addresses. How can each of them be sure that
the other person they meet in the lobby of the hotel is actually the person they are supposed to
meet, and not an impostor?

For example, the impostor could act as a “man in the middle”: He meets with employee A of
corporation A-Corp in the lobby and poses as employee B of corporation B-Corp. Thus he gains the
confidential information from A and goes into the bar where he meets the real employee B. Here he
poses as employee A from A-Corp, gives the confidential information from the “real” A to B and
receives similar information back from B. Finally he goes back into the lobby and gives the
information he received from B to the “real” employee A. Of course, on his way from the lobby to the
bar and back, he made copies of the information he was carrying. At the end, both employee A and B
are unaware that they did not talk to their “real” counterparts, but to an impostor that acted as a
man in the middle, and the impostor goes back to his employer C-Corp with the confidential
information he gained from their competitors.

On a network, this “man-in-the-middle” attack is even easier to mount: The only thing that server
and client know of each other are their network addresses, which can be forged. So how is this
solved?

In real live, the two employees of A-Corp and B-Corp would probably simply request to see some
picture ID with name and home address of their communication partner. They would then compare
the picture on the ID with the person they are talking to and verify, that the name and address on
the ID matches the ones they have been told before. If the ID matches the person, they would know
that they talk to whom they are supposed to talk to.

But in doing so, they actually implicitly trust a third party that has not been involved yet: This is the
agency that issued the picture ID. With accepting the ID, they trust this agency, that it has created
the ID in such a way, that it is hard to forge and they also trust this agency, that it in turn verified that
the person they issued the ID to really is the person he claims to be. If employee A would have tried
to use his golf club picture ID for identification, then employee B would probably have rejected it as
improper identification, because he wouldn’t trust either that the clerk in A’s golf club responsible
for issuing the ID really did a thorough check of A’s identity, or he didn’t trust the security features of
the ID (these days, anyone can create a nice looking picture ID with the help of a color laser printer).
So instead he would probably request a “proper” ID like a passport or something similar.

With online communication, the problem of identifying the communication partner is solved in a
similar way: The role of a “picture ID” in real life is fulfilled by so called “certificates” in the online
world. A certificate asserts, that the owner of the certificate really is the entity it claims to be. For
example, a certificate could assert, that the server with the host name “host.somecorp.com”
really is a server that belongs to SomeCorp, and that it is not a server of an impostor.

But how are the problems of credibility (has the identity really been checked thoroughly before the
certificate was issued?) and falsification (can the certificate be falsified or a false certificate be
created?) solved?

Simply falsifying a file that states “Yes, the server ‘host.somecorp.com’ indeed is a server of the
SomeCorp corporation” would not be too hard for an impostor.

So what happens is, that the certificate is digitally signed by a trustworthy certification authority
(CA), so that it now reads: “Yes, the server ‘host.somecorp.com’ is a server of the SomeCorp
corporation, and we, the people from TrustCorp, have verified that this is indeed so.”

LISTSERV Maestro Admin Tech Doc 9 3 Securing Access with HTTPS

The digital signature is very useful, because it prevents anyone from tampering with the certificate: If
even a single letter (or byte) in the text of the certificate is changed, the signature no longer matches
and the certificate is invalid.

But a last problem remains: To test the validity of the signature, you require the public key of the
certification authority (this is the public counterpart of the private key that the CA used to sign the
original certificate with).

Of course you cannot simply use any public key that you find anywhere (or are given by someone),
because who would then guarantee that the public key you got really is a key from the entity it
supposedly belongs to? You need to be very sure about the origin of the public key that you use to
verify the digital signature of a certificate, otherwise, the “man in the middle” would still have a
chance to spy on you: The intruder would create his own public/private keys with a forged name of
“TrustCorp” and his own certificate with a forged host name of SomeCorp. Then he would use his
own private key to sign the certificate and would give the public key to you claiming “this is the
public key of TrustCorp”. If you would then use this public key to check the validity of the forged
certificate, you would get a match, e.g. you would believe the forged certificate that states that a
certain host belongs to SomeCorp. While you believed that you communicated with a server of
SomeCorp, you would instead be communicating with a server of the attacker.

So how do you verify the public key of the certification authority?

Luckily, when it comes to web-browser, in most cases you do not have to do this explicitly: Most
web-browsers are already equipped with a list of trusted so called “root certificates”. You do not
have to verify that these certificates indeed come from the entity they claim they come from,
because the browser vendor has already done this for you.

So the full trust-chain when you use your browser to access a secured server looks like this:

• The browser vendor received root certificates from the signing authorities, verifying their
validity.

• You trust the browser vendor that it included only root certificates of entities whose identity
he could confirm (and implicitly you also trust yourself, that you didn’t install a browser from
a 3rd party that only claims to be the browser vendor you think it is, but instead is a front-end
for an attacker who wants to give you falsified root certificates this way).

• Your browser trusts any certificate that is signed with a certificate that can be traced to one
of the trusted root certificates (this can be a very short chain like “a certificate signed with a
root certificate” or a long chain like “a certificate signed with a certificate that was signed
with a certificate … etc. … that was signed with a root certificate”).

• Your browser trusts any server that has a certificate that the browser trusts.

In the real life example, we met the employees A and B who both needed picture IDs to verify each
other. With online communication this verification is often only one-sided: For most purposes it is
enough that the client is sure about the server it communicates with. It is usually not required that
the server is sure about the client too.

Therefore, usually only the server has a certificate (which is, down the trust chain, signed by a trusted
root certificate), but not the client.

LISTSERV Maestro Admin Tech Doc 9 4 Securing Access with HTTPS

There are real-word examples for this too: If you buy a car privately from its former owner, then you
probably want to see a proper picture ID of that owner, to make sure that he matches the picture in
the ID, and the name and address on the ID match the ones in the documents of the car. Otherwise
you would risk buying a stolen car without knowing it. On the other hand, the seller does not
necessarily have to see your ID, because he really doesn’t care about who you are (as long as you pay
cash, of course…).

Finally, lets summarize the concepts we have introduced:

• Server Certificate

This certificate asserts, that a certain server (with the given host name) really belongs to a
certain organization, so that you can trust the server and safely communicate confidential
data to it. This certificate is digitally signed to prevent tampering and falsification.

• Trusted Root Certificate

The trusted root certificate was used to sign the actual server certificate (or another
certificate down the trust-chain that was used to sign the actual server certificate, etc.).

Usually the fact that a root certificate is installed together with a trusted software (like the
browser) already makes it a trusted root certificate. Sometimes you would also receive a root
certificate via other means (for example via e-mail). In that case you would first have to
verify it before you can rate it as “trusted”. For example, you could call the person that sent
you the certificate and let her read the certificate’s fingerprint to you, which you could
compare to the fingerprint of the certificate you received.

• Encrypted Communication

Happens with the help of an encryption key which is generated “on the fly” when the
communication begins. The verification that you are not talking to some “man-in-the-
middle” while negotiating the encryption key happens through verifying the communication
partner’s certificate and matching its digital signature (down the trust-chain) to one of the
trusted root certificates.

3 The Trusted Root Certificate Keystore

LISTSERV Maestro is shipped with a default keystore that contains the trusted root certificates of
many CAs (certification authorities). This keystore is called the trusted root certificate keystore and it
plays an important role when using HTTPS.

3.1 Secure the Trusted Root Certificate Keystore

As a first step when starting to use certificates, you should secure the trusted root certificate
keystore. The keystore initially has the well-known default password “changeit” and is therefore
unprotected by default.

To change the password of the trusted root certificate keystore, execute the following command:

[maestro_install_folder]/java/bin/keytool –storepasswd

–keystore [maestro_install_folder]/java/lib/security/cacerts

You are first queried for the old password (which is “changeit”, if it has not been changed since
installation of LISTSERV Maestro), and then twice for the new password. You need to enter a new
password with at least six characters, but longer and more complex passwords are safer!

LISTSERV Maestro Admin Tech Doc 9 5 Securing Access with HTTPS

4 Let LISTSERV Maestro Manage the Certificates

While it is possible to create and manage certificates manually (see section 4.2.2), it is much easier to
let LISTSERV Maestro do this for you automatically.

For this, LISTSERV Maestro makes use of the free Let’s Encrypt service. Let’s Encrypt is a free and well
established CA that offers an automation interface through which LISTSERV Maestro can obtain and
refresh your certificates for you. The only thing you need to do to use this feature free of charge is to
accept the Let’s Encrypt subscriber agreement (please see the Let’s Encrypt website for details about
this agreement).

Using the automatic certificate handling has several advantages:

• It is much easier to configure in LISTSERV Maestro.

• You do not have to use a command line tool to create and manage the certificates.

• You do not have to manually refresh the certificates before they expire, as LISTSERV Maestro
refreshes them automatically.

• The certificates that are issued by Let’s Encrypt are free to use. You do not have to pay a CA
to sign the certificates for you.

4.1 Preconditions for Using Automatic Let’s Encrypt Certificates

For the automated Let's Encrypt certification process to work, the following preconditions must be
fulfilled:

• LISTSERV Maestro must use the standard HTTP port 80 for unencrypted HTTP access

This applies both to a LISTSERV Maestro server where HTTPS is not yet enabled at all and to a
server that is already secured with HTTPS:

• On a server where HTTPS is not yet enabled: If you now want to create your first
Let's Encrypt certificate, then LISTSERV Maestro on that server must currently be
using HTTP with the standard HTTP port 80.

• On a server where HTTPS is already enabled (either manually or with automatic Let's
Encrypt certificates): LISTSERV Maestro on that server must be configured to do an
automatic HTTP to HTTPS redirect from the standard HTTP port 80 to the HTTPS port.

This is important because otherwise LISTSERV Maestro will either be unable to obtain the
certificates from Let's Encrypt in the first place, or will be unable to automatically refresh the
certificates before they expire. See section “4.2.1 Troubleshoot Port 80 Problems” for
options in case that your LISTSERV Maestro uses a non-standard port for unencrypted HTTP
or if it has HTTPS enabled without a HTTP to HTTPS redirect or if the redirect uses a non-
standard HTTP port.

• Certificate host names and secured IP addresses must match

Certificates are issued for certain host names. A given certificate can be issued for a single
host name or for a set of host names. Such a certificate is then used to secure a given IP
address for HTTPS.

For this to work, the host names in the certificate must match the host names that are
assigned to the IP address. Specifically: All host names that are assigned to an IP address
must also be included in the certificate that is to be used to secure this IP address.

https://letsencrypt.org/

LISTSERV Maestro Admin Tech Doc 9 6 Securing Access with HTTPS

For example, for an IP address with only one host name, the certificate should contain only
this one host name. For an IP address with three different host names, the certificate should
contain exactly these three host names.

This is important, because otherwise LISTSERV Maestro may serve the wrong certificate to
the user's browser, which the browser will then show as an invalid and insecure connection.

4.2 Secure an IP Address With an Automatic Let’s Encrypt Certificate

To secure an IP address with an automatic Let’s Encrypt certificate, follow this procedure:

1. Decide which IP address you want to secure

If you do not know the IP address, but only the server’s host name, for example from the
LISTSERV Maestro access URL, then you need to find out the IP address that this host name is
assigned to (for example with the command line tool “nslookup” or something similar).

2. Determine all public host names that are assigned to this IP address

An IP address may have several public host names assigned. You need to find out all of these
host names for the certificate.

It is important that the server in question is accessible from the public internet via all of
these host names (this usually means that there must be a registered DNS A record for each
host name that points to the selected IP address).

3. In LISTSERV Maestro, create a new certificate that contains all of these host names

To do so, login into the Administration Hub (HUB) as the administrator and select
Main Menu → HTTPS Certificates. Then on the certificates page, if still necessary, subscribe
your LISTSERV Maestro at Let’s Encrypt.

To create a certificate, in the section that lists the servers on which the LISTSERV Maestro
components are installed (can be one, two or three servers), locate the server to which the
desired IP address is assigned and click the associated “Create new certificate manage by this
server” link. Then proceed as described on screen (for more information, refer to the online
help via the (?) icon in the top right corner).

4. Use the new certificate to secure the IP address that you decided on

The certificate that has been created in the previous step is not automatically used for HTTPS
connections. To actually make use of the certificate, you need to add a specific entry to the
“tomcat.ini” file of the corresponding server (i.e. the server for which you created the
certificate in the previous step):

[maestro_install_folder]/conf/tomcat.ini

The entry that you need to add is different for each certificate. To find out the correct entry
for a given certificate, click the “How to Apply This Certificate” link that is associated with the
certificate.

On the following page, you can enter the IP address that you want to secure, plus the desired
HTTPS port. This will construct the correct INI entry for you, which you can then simply
copy & paste to the desired “tomcat.ini” file.

Again, see the online help of that page (via the (?) icon in the top right corner) for more
information.

LISTSERV Maestro Admin Tech Doc 9 7 Securing Access with HTTPS

With the above procedure complete and the necessary entry added to the tomcat.ini, LISTSERV
Maestro on that server will then bind two ports on the given IP address:

• The specified HTTPS port for HTTPS connections.

• The default HTTP port 80 for automatic HTTP-to-HTTPS redirects and to enable the server to
automatically request and refresh certificates from the Let's Encrypt CA.

Important: It is necessary for LISTSERV Maestro to not only bind the specified HTTPS port, but also
the standard HTTP port 80, for the automatic certificate mechanism to work. For the same reason,
both ports must be accessible from the public internet. See section “4.2.1 Troubleshoot Port 80
Problems” for options if binding port 80 is not possible.

Remember that, as always when you make changes to the “tomcat.ini”, you need to restart
LISTSERV Maestro on that server to make the changes effective.

Reminder: You can configure which other addresses LISTSERV Maestro shall bind to (in addition to
the addresses that are secured as explained above) via the “BindAddress” entry. See “LMA Admin
Tech Doc 6 – IP Addresses and Ports” for details.

If you are enabling HTTPS for the first time, then most likely you will also have to configure the
applicable access URLs and/or tracking URLs to use the "https://" protocol. This is done on the
Default URL Settings page (Main Menu → LUI Settings → Application Default Settings → URL
Settings) and these defaults can also be overridden on account or group level.

4.2.1 Troubleshoot Port 80 Problems

As was explained above, for the automatic certificate mechanism to work, LISTSERV Maestro must be
able to bind the standard HTTP port 80 on the IP address that you want to secure (in addition to the
desired HTTPS port).

However , in some situations this is not possible. Usually because some other server software (like a
web server) is running on the same server and already uses port 80 on the given IP address, which
forces the administrator to configure LISTSERV Maestro to use a different port for HTTP connections
(for example port 8080).

In such a situation, where the standard HTTP port is not free to be used, it is normally not possible
for LISTSERV Maestro to automatically obtain and refresh the Let’s Encrypt certificates, which is why
the automatic certificate management feature normally cannot be used in such a case.

Unless the other server software supports HTTP redirecting or forwarding. If it does, then the
following workaround can be implemented to again enable LISTSERV Maestro to use the automatic
certificate management feature:

• The other server software (the one that uses port 80) must be configured to redirect or
forward all HTTP requests on the following group of URLs to LISTSERV Maestro.

The software must be configured to redirect/forward any URL of this pattern:

http://YOUR_SERVER/.well-known/acme-challenge/*

to this modified URL:

http://YOUR_SERVER:MAESTRO_HTTP_PORT/.well-known/acme-challenge/*

without otherwise changing the URL (where “MAESTRO_HTTP_PORT” is the port as defined
in the next step).

LISTSERV Maestro Admin Tech Doc 9 8 Securing Access with HTTPS

• The entry for the “tomcat.ini” that was added in step 4 in section 4.2 above, must be
augmented with a second port parameter, which specifies the same “MAESTRO_HTTP_PORT”
as was used above for the redirect/forward.

This second port parameter is appended to the INI file entry separated by a second
colon “:”. Obviously, this port must be a free port that is not currently in use (most
importantly, it must not be the HTTPS port or the default port 80 that is already in use by the
other server software).

For example, if you want to use port 8080 and the INI entry originally looks like this:

Secure-192.168.1.1=5O7THERW2NKE6VQLW3UN:443

then you must modify this entry to look like this:

Secure-192.168.1.1=5O7THERW2NKE6VQLW3UN:443:8080

With the original entry, LISTSERV Maestro would attempt to bind both port 443 and port 80
on the given IP address. With the modified entry, LISTSERV Maestro will instead bind port
443 and port 8080.

(Remember that you need to restart LISTSERV Maestro to make the change effective.)

Advanced Feature 1: It is possible to configure LISTSERV Maestro to bind to more than one HTTP-to-
HTTPS redirect port. Any incoming HTTP requests on these ports are then forwarded as a HTTPS
requests to the HTTPS port. If you want to have several such redirect ports, simply append them with
additional colons “:” as separators. For example, if you want to bind the standard port 80 and the
non-standard ports 8080 and 8081 to all redirect from HTTP to HTTPS (on port 443), then the entry
would look like this:
Secure-192.168.1.1=5O7THERW2NKE6VQLW3UN:443:80:8080:8081

Advanced Feature 2: The HTTPS port as specified in the Secure-xxx entry is used for two purposes:
It is the port that Maestro binds to (for the HTTPS protocol) and it is the target HTTPS port that is
used for the automatic HTTP-to-HTTPS redirect.
In some situations however, it can be necessary to use two different ports for these two purposes.
For example if Maestro is installed behind a proxy and the proxy exposes Maestro on a different port
than what Maestro uses to bind to on the local machine. E.g. if the proxy exposes Maestro on the
default HTTPS port 443, but on the local machine Maestro is instead supposed to bind on the non-
standard port 7701. In that case, it is necessary to specify in the tomcat.ini, that Maestro is
supposed to bind on one port (7701) but is also supposed to send the HTTP-to-HTTPS redirect to a
different port (443).
This can be done by specifying the two HTTPS ports as a comma separated pair, like this:
Secure-192.168.1.1=5O7THERW2NKE6VQLW3UN:7701,443

Of this pair, the first port is the port that Maestro shall bind to (for HTTPS) and the second port is the
port that is to be used as the target HTTPS port when doing HTTP-to-HTTPS redirects.
In the example above, no special HTTP port is given, so the HTTP port used will be the default of 80.
Of course this can also be combined with specifying a different HTTP port (after a colon):
Secure-192.168.1.1=5O7THERW2NKE6VQLW3UN:7701,443:8080
Or even with specifying a list of different HTTP ports:
Secure-192.168.1.1=5O7THERW2NKE6VQLW3UN:7701,443:80:8080:8081

Advanced Feature 3: For very special use cases, it is even possible to tell LISTSERV Maestro to only
bind the HTTPS port, and not bind any HTTP redirect port at all. To do so, modify the INI entry with a
second colon “:” after the HTTPS port, but not followed by a HTTP port. For example like this (note
the colon at the very end):
Secure-192.168.1.1=5O7THERW2NKE6VQLW3UN:443:

LISTSERV Maestro Admin Tech Doc 9 9 Securing Access with HTTPS

4.2.2 Modify an Existing Let’s Encrypt Certificate

In some situations, it may be necessary to add a new host name to a certificate, or to remove one of
the names from a certificate, for example if a new host name is assigned to the IP-address (or
removed from it).

In fact, you cannot actually change the host names of an existing certificate. Instead, you create a
new certificate in addition to the old certificate, only with more (or less) host names than the old
certificate. This new automatic Let’s Encrypt certificate is created in the same fashion as the original
one (see above).

So for a time, two certificates exist, with an overlapping set of host names. Of these two certificates,
initially only the old certificate is in use.

Once the new certificate is created, you then modify the tomcat.ini to use the new certificate
instead of the old one and restart LISTSERV Maestro. After the restart, only the new certificate will
be in use, and the now superfluous old certificate can be revoked in the HUB.

5 Manage Certificates Manually

In addition to handling certificates automatically for you, as described in section 4, LISTSERV Maestro
also allows you to create, manage and refresh your certificates manually. This section and its sub-
sections describe the procedure for doing this.

Note: Managing certificates manually is much more complicated (as evidenced by the lengthy
description in the following sub-sections) and is not recommended, unless you have good reasons
why you cannot use LISTSERV Maestro’s automatic certificate management as described in the
previous section.

5.1 The keytool Tool

To manually manage certificates for LISTSERV Maestro, you use the command line tool called
“keytool”, that is installed together with LISTSERV Maestro and that is part of the Java installation
that comes with LISTSERV Maestro. For more information about this tool, see the documentation of
this tool at Oracle’s website:

 http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

 or

 http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

5.2 Install a Server Certificate

To enable HTTPS in LISTSERV Maestro, you need to obtain a signed server certificate for the server
you want to secure.

You cannot simply obtain just any server certificate and use it on whatever server you want: The
certificate is always bound to the explicit server name that you chose when you created the
certificate. Should you want to move your LISTSERV Maestro component to a different server (with a
different name) or want to rename your server, then you would have to obtain a new certificate for
the new name.

You can either create a new server certificate from scratch, using the keytool that is included with
LISTSERV Maestro, as described in section “5.2.1 Create and Install a New Server Certificate”, or you

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

LISTSERV Maestro Admin Tech Doc 9 10 Securing Access with HTTPS

can use an existing certificate (for the correct host name) that you have already obtained, as
described in section “5.2.2 Install an Existing Server Certificate”.

5.2.1 Create and Install a New Server Certificate

If you do not already have a signed certificate for your server, then you will need to create and install
a new server certificate. This basically involves three steps, which are explained in more detail in the
following sub-sections:

1. Create an unsigned certificate with the name of the server you want to secure.

2. Create a certificate signing request (CSR) from that certificate and send it to a certification
authority (CA). The CA first verifies that you really are who you claim to be and then returns a
signed version of your certificate to you.

3. Replace the unsigned certificate with the signed certificate you get back from the CA.

5.2.1.1 Create an Unsigned Server Certificate

In Java, all certificates are stored in a so called “keystore”, which is a special file that is protected with
a password.

To create a new certificate in a keystore file, execute the following command:

[maestro_install_folder]/java/bin/keytool –genkeypair –alias NAME –validity

DAYS -keystore KEYFILE –keyalg RSA –keysize 2048

with the following replacements:

NAME: The name of the certificate. Can be any name that is not already in use in the keystore file you
specify (see below), but you should choose an informative name that helps you recognize the
certificate at a later time.

DAYS: Limits the validity of the certificate. The certificate will expire so many days after the day when
you created it. Can be any number of days. Usually, when you purchase the signing service from
the CA, you pay for only a limited period during which the certificate shall be valid. Choose a
number of days for this parameter, that is no shorter than the period you purchase from the CA
(a little padding here is probably a good idea, to be on the safe side).

KEYFILE: The keystore file to which the certificate shall be added. If the file doesn’t exist, it is
created. If it already exists, a certificate with the given “NAME” is added to it. Note: This is not

Important: Be very careful with the keystore file into which you create the certificate. You need to
protect this file in several respects:

• Do not “lose” or accidentally delete this file, since it contains your certificates and you
would have to purchase new certificates if you lose this file. You should always keep a
backup at a safe location. This backup location should be outside of your LISTSERV
Maestro installation folder, or otherwise the files could be deleted during an
uninstallation of LISTSERV Maestro.

• Protect the file against unauthorized access. Even though the file is password protected,
passwords can always be cracked, and an attacker could thus gain access to your
certificates.

LISTSERV Maestro Admin Tech Doc 9 11 Securing Access with HTTPS

the same keystore file as the trusted root certificate keystore file that was used in section 3, but
is a different keystore, in which you store your server certificate.

 Choose a suitable location and filename for your keystore file, that takes into account the
special security considerations for this file (see below).

Note about the –keysize parameter: The command line as shown above specifies a key size of 2048
bits, which conforms to the current recommended standard. You should only specify a shorter key if
there is a good reason for this.

The tool first prompts you to enter the password with which the keystore is protected. If you are
using an existing keystore, you need to enter its password. If you gave a filename of a keystore that
does not yet exist, then a new keystore is created and it is protected with the password you enter at
the first prompt (you must choose a password with at least six characters, but longer and more
complex passwords are safer).

Next, the tool prompts you for the following information values. Each time you may press ENTER to
simply accept the default value “Unknown”. However, some values you must enter for the certificate
to work and some CAs require that you fill out other values. So it is generally a good idea to fill out all
values with whatever fits bets in your case (see below):

• What is your first and last name?

Here you must enter the host name of the server that you want to secure with the certificate
you are creating. Yes, even though the question asks after your “first and last name”, you
have to enter the host name of the computer instead!

This should be the same host name that is used in the URLs to access the server. For
example, if the URL is “http://maestro.mycorp.com/lui”, then you need to enter the
host name “maestro.mycorp.com” (without the quotes, of course).

If the certificate is supposed to be a wild card certificate, then you enter the appropriate wild
card host name or domain name here.

If the certificate is supposed to contain several host names, then pick one of the host names
as you main host name and enter it here. The remaining host names will be added in a later
step, when you generate the certificate signing request (CSR) for the certificate (see below).

• What is the name of your organizational unit?

• What is the name of your organization?

• What is the name of your City or Locality?

• What is the name of your State or Province?

• What is the two-letter country code for this unit?

Here you should use the two-letter uppercase code that fits the country where the server is
deployed, like US, DE, SE, CH, etc.

When you have answered the last question, you see a summary of your input and are requested to
confirm it. Type “yes” and ENTER to accept your input, or “no” and ENTER (or simply ENTER) to reject
it (in this case you can enter the values again, until you are satisfied).

After you have confirmed your input, the tool generates the certificate. When it is done, it asks you
for a password to protected the certificate. Although generally you are able to choose any password,
for the certificate to be usable with LISTSERV Maestro, you must enter the same password as you

LISTSERV Maestro Admin Tech Doc 9 12 Securing Access with HTTPS

chose for the keystore itself. To do so, simply press ENTER without entering anything, so that you
accept the default.

At this point, the certificate is created (as a public/private key pair), but it is still unsigned and can
therefore not yet be used for a secure HTTPS connection.

5.2.1.2 Perform a Certificate Signing Request (CSR)

Once you have created an unsigned certificate, you can generate a certificate signing request (CSR)
from it, that you can submit to a certification authority (CA) of your choice, for example VeriSign.

To generate a CSR for a certificate in the keystore for the single host name that is already stored in
the certificate, execute the following command:

[maestro_install_folder]/java/bin/keytool –certreq –alias NAME –file

OUTFILE -keystore KEYFILE

If you want to generate a CSR for a certificate that shall include additional host names (in addition to
the main host name that is already stored in the certificate), execute the following command instead:

[maestro_install_folder]/java/bin/keytool –certreq –alias NAME –file

OUTFILE -keystore KEYFILE –ext san=ADDITIONAL_HOST_NAMES

with the following replacements:

NAME: The name of the certificate. This must be the name of the certificate that you want to create
the CSR for (the same name that you specified when you created the certificate).

OUTFILE: The file into which the CSR will be written. If the file already exists, it will be replaced with
the new file.

KEYFILE: The keystore file in which the certificate is stored.

ADDITIONAL_HOST_NAMES: Only necessary if you want to add additional host names to the CSR.
Specify all additional host names (but not the main host name that is already stored in the
certificate) as a comma-separated list (without separating spaces), where each host name is
prefixed with the token “dns:”. For example:

 dns:www.mycorp.com,dns:maestro.mycorp.com,dns:sample.mycorp.com

The command queries you for the password of the keystore. After you have entered it, the file you
specified as “OUTFILE” will be written.

This file is a text file that contains the CSR in Base64-encoded form (PEM). It will look similar to this:

-----BEGIN NEW CERTIFICATE REQUEST-----

tPnJhsLOuocsBYAmyM11qiZ5BEVWAnJfZ6kyN/XfT5NFxGIy9Uynz5kODfBwFUgiu98iQKWyMKC/

bGFuZ2VuMQ8wDQYDVQQKEwZMLVNvZnQxEDAOBgNVBAsTB1Vua25vd24xDzANBgNVBAMTBnRlcHBp

6E7Zyl9wkPyVpn1qbnbtXQGAablJInE9/LruaJ1NX1f/NVJgL4vPiDKsU4laGvJHBNhdj+F0uVb3

SIb3DQEBBAUAA4GBAB6XqdfJvhy7dTHijsHjw+c4ELQFI/TkHBvgp5NaCccQoNwwW9lnIeOikDb2

lwWg56G6LiYfpVBss5+OOW2jXlq9CdNw1KLSDQ+kMtZjdVr8+iQ9gsqxvskCAwEAAaAAMA0GCSqG

MIIBpjCCAQ8CAQAwZjELMAkGA1UEBhMCREUxEDAOBgNVBAgTB0dlcm1hbnkxETAPBgNVBAcTCEVy

YzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAz+hQRsqDWRLvmV4YD5+JaQEXn5qqJeyzkfg2

PQoU2VPgHID0VnyTPt8r/t4uFk8p1NxjYkC4

-----END NEW CERTIFICATE REQUEST-----

LISTSERV Maestro Admin Tech Doc 9 13 Securing Access with HTTPS

You now have to submit this CSR to the CA of your choice which is usually possible online.

After the CA has received your CSR, they will first verify that you (or your corporation) indeed are
who you claim to be, i.e. if the content of the certificate can be trusted or not. This usually happens
via conventional means (making phone calls, checking company registrations, etc.) and may take a
few days.

Once they have verified the validity of the certificate, they will either return the signed certificate to
you, or will supply you with further instructions on how to obtain it.

5.2.1.3 Install the Signed Server Certificate

The signed certificate that you receive back from your CA must be in X.509 format (v1, v2 or v3),
either in binary format (DER encoded) or Base64 encoded text format (PEM). The reply can be a
single certificate or a certificate chain (with intermediate certificates), where the latter must be a
PKCS#7 formatted reply or a sequence of X.509 certificates in a single file.

Once you have received the signed certificate (or certificate chain), store it into a file. Then execute
the following command:

[maestro_install_folder]/java/bin/keytool –importcert –alias NAME –file

INFILE -keystore KEYFILE –trustcacerts

with the following replacements:

NAME: The name of the certificate. This must be the name of the certificate that you made the CSR
for (the same name that you specified when you created the certificate and the CSR).

INFILE: The file in which you have stored the reply from the CA that contains your signed certificate
or certificate chain.

KEYFILE: The keystore file in which the certificate is stored.

The import command loads the certificate from the given file and tries to validate it using the other
certificates in the given file (if the file contained a certificate chain) and the trusted certificates in
LISTSERV Maestro’s trusted root certificate keystore.

If a trust chain can be established, starting at the imported certificate and ending at a self-signed
trusted root certificate, then the signed certificate is imported into the keystore, and thus replaces
the unsigned version of the certificate that was in the keystore before. You now have a keystore that
you can use to enable HTTPS in LISTSERV Maestro.

If the trust chain cannot be established, an error message is printed out and the signed certificate is
not imported. See section “5.2.1.3.1 Troubleshoot Certificate Import Problems” for details on how to
proceed in this case.

But if the certificate was imported successfully, continue with section “5.3 Make LISTSERV Maestro
aware of the Server Certificate”. Optionally, you can first verify the keystore, as described in section
“5.2.4 Verify the Certificate Keystore”.

5.2.1.3.1 Troubleshoot Certificate Import Problems

If the certificate import command that was described above did not successfully import the signed
certificate into the keystore, but instead you got an error message that no trust chain could be
established, then you are either missing one or more intermediate certificates in the certificate

LISTSERV Maestro Admin Tech Doc 9 14 Securing Access with HTTPS

chain, and/or LISTSERV Maestro does not have the CA’s trusted root certificate in its trusted root
certificate keystore. The following two items describe how to proceed in these situations.

1. Missing Intermediate Certificates

Situation: The certificate was not signed directly with a trusted root certificate, but was
signed with an intermediate certificate, and this intermediate certificate was missing from
the imported certificate file.

In this case, it is not possible to build a trust chain from the signed certificate to the trusted
root certificate, via the intermediate certificate, because the intermediate certificate is
missing.

Solution: Make sure that the INFILE that you used for the command above contains both
the signed server certificate and also the necessary intermediate certificate (or even several
intermediate certificates, if several intermediates were used between the server certificate
and the root certificate).

For example, if the INFILE is in Base64 encoded PEM format, then a certificate begins with a
-----BEGIN CERTIFICATE----- line and ends with an -----END CERTIFICATE----- line. If you
need to import the server certificate plus one intermediate certificate, then the INFILE
should therefore contain two such blocks (of which the first usually is the server certificate
and the second the intermediate certificate), similar to this:

-----BEGIN CERTIFICATE-----

MIIJhsLOuocsBYAmyM11qiZ5BEVWAnJfZ6kyN/XfT5NFxGIy9Uynz5kODfBwFUgiu98iQKWyMKCa

6E7Zyl9wkPyVpn1qbnbtXQGAablJInE9/LruaJ1NX1f/NVJgL4vPiDKsU4laGvJHBNhdj+F0uVb3

BpjCCAQ8CAQAwZjELMAkGA1UEBhMCREUxEDAOBgNVBAgTB0dlcm1hbnkxETAPBgNVBAcTCEVytPn

SIb3DQEBBAUAA4GBAB6XqdfJvhy7dTHijsHjw+c4ELQFI/TkHBvgp5NaCccQoNwwW9lnIeOikDb2

lwWg56G6LiYfpVBss5+OOW2jXlq9CdNw1KLSDQ+kMtZjdVr8+iQ9gsqxvskCAwEAAaAAMA0GCSqG

YzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAz+hQRsqDWRLvmV4YD5+JaQEXn5qqJeyzkfg2

BgNVBAsTB1Vua25vd24xDzANBgNVBAMTBnRlcHBpPQoU2VPgHID0VnyTPt8r/t4uFk8p1NxjYkC4

bGFuZ2VuMQ8wDQYDVQQKEwZMLVNvZnQxEDAO

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIBpjCCAQ8CAQAwZjELMAkGA1UEBhMCREUxEDAOBgNVBAgTB0dlcm1hbnkxETAPBgNVBAcTCEVy

tPnJhsLOuocsBYAmyM11qiZ5BEVWAnJfZ6kyN/XfT5NFxGIy9Uynz5kODfBwFUgiu98iQKWyMKCa

bGFuZ2VuMQ8wDQYDVQQKEwZMLVNvZnQxEDAOBgNVBAsTB1Vua25vd24xDzANBgNVBAMTBnRlcHBp

6E7Zyl9wkPyVpn1qbnbtXQGAablJInE9/LruaJ1NX1f/NVJgL4vPiDKsU4laGvJHBNhdj+F0uVb3

SIb3DQEBBAUAA4GBAB6XqdfJvhy7dTHijsHjw+c4ELQFI/TkHBvgp5NaCccQoNwwW9lnIeOikDb2

lwWg56G6LiYfpVBss5+OOW2jXlq9CdNw1KLSDQ+kMtZjdVr8+iQ9gsqxvskCAwEAAaAAMA0GCSqG

YzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAz+hQRsqDWRLvmV4YD5+JaQEXn5qqJeyzkfg2

PQoU2VPgHID0VnyTPt8r/t4uFk8p1NxjYkC4

-----END CERTIFICATE-----

Note: Do not include the actual trusted root certificate of the root CA in this file, but only the
(signed) server certificate that you received back from the CA, plus any necessary
intermediate certificates. In many cases, if intermediate certificates are required, they will
already be included with the server certificate in the fashion described above, when the
signed server certificate is returned to you by the CA.

If all the necessary intermediate certificates are included correctly (or if none are necessary
in the first place), then the import as described above should be successful. But if you still get
the trust chain error during import, even with all intermediate certificates present, then most
likely you have encountered the “Missing Trusted Root Certificate” situation as described in
the following item. In this case, proceed as described below.

LISTSERV Maestro Admin Tech Doc 9 15 Securing Access with HTTPS

2. Missing Trusted Root Certificate

Situation: The certificate was signed by a CA for which LISTSERV Maestro does not already
have a trusted root certificate in the trusted root certificate keystore.

In this case, it is not possible to build a trust chain from the signed certificate to the trusted
root certificate (possibly via intermediate certificates), because the trusted root certificate
itself is missing.

Solution: Install the root certificate of the CA (the one that was used to sign your server
certificate) into the trusted root certificate keystore of LISTSERV Maestro, as described in
section “5.2.3 Install a New Trusted Root Certificate”. Then return to the section 5.2.1.3
above and try to import the signed server certificate again.

Remember: Only install the actual root certificate into LISTSERV Maestro’s trusted root
certificate keystore, never the intermediate certificates.

5.2.2 Install an Existing Server Certificate

If you already have a signed server certificate for the host name that you use with LISTSERV Maestro,
then it is possible to use this existing certificate to enable HTTPS in LISTSERV Maestro.

To do so, you must store the certificate (and its private key), plus all necessary intermediate
certificates, as a single entry in a Java keystore file. You may also have to add the root certificate of
your CA to the trusted root certificate keystore of LISTSERV Maestro.

The procedure for how you do this depends on the format that the certificate is currently stored in
and can therefore differ from case to case. The following subsections describe the most common
scenarios.

5.2.2.1 Existing Certificate in a Java Keystore

Situation: The server certificate plus the necessary intermediate certificates (if any) are already
stored in a Java keystore file as a single signed PrivateKeyEntry (with a certificate chain length
that reflects the number of intermediate certificates).

Solution: If the certificate entry in the keystore conforms to the rules as described in section “5.2.4
Verify the Certificate Keystore”, then you can use this keystore directly, as described in section “5.3
Make LISTSERV Maestro aware of the Server Certificate”, without the need to further convert it into
a LISTSERV Maestro compatible format. When using this keystore, you should also check for any root
certificate problems as described in section “5.2.2.3 Check the Root CA Certificate”.

If the certificate does not conform to these rules, then the keystore entry must be changed so that it
fulfills these rules. Exactly which changes are necessary for this is beyond the scope of this
document. In such a case, please contact L-Soft support for help.

5.2.2.2 Existing Certificate in X.509 Certificate Files or PKCS12 Format

An existing server certificate is often not already available in a Java keystore format, but rather as
standard X.509 certificate files. Sometimes as separate files for the server certificate and
intermediate certificates, sometimes as a combined file, sometimes even already in PKCS12 format.

Each of the following subsections starts off with a different situation regarding the initial structure
and format of the certificate file(s) and describes how to convert the certificate into the Java
keystore format that can be used with LISTSERV Maestro.

Please proceed to the subsection that comes closest to your current situation and continue from
there.

LISTSERV Maestro Admin Tech Doc 9 16 Securing Access with HTTPS

5.2.2.2.1 Existing Certificate in Separate X.509 Certificate Files, Plus Private Key File

Situation: The server certificate is stored in a X.509 certificate file and the private key for the
certificate is stored in another separate file. There is also at least one intermediate certificate
(excluding the CA’s root certificate) and the intermediate certificates are also stored in their own
separate X.509 certificate files (i.e. there are individual files for all certificates and the private key).

Solution: You need to combine the server certificate and the intermediate certificates into a single
certificate file, forming a sequence of X.509 certificates. If the certificates are stored in binary (DER
encoded) format, you will need to use a tool like openssl to do this (see https://www.openssl.org/). If
they are stored in Base64 encoded text format (PEM), you can simply do so with a text editor:

In Base64 encoded PEM format, a certificate begins with a -----BEGIN CERTIFICATE----- line and
ends with an -----END CERTIFICATE----- line. To combine the server certificate and the intermediate
certificates into a single file, simply put them into that file one after the other, with a text editor. For
example, if you have the server certificate plus one intermediate certificate, then the resulting file
would be similar to this:

-----BEGIN CERTIFICATE-----

MIIJhsLOuocsBYAmyM11qiZ5BEVWAnJfZ6kyN/XfT5NFxGIy9Uynz5kODfBwFUgiu98iQKWyMKCa

6E7Zyl9wkPyVpn1qbnbtXQGAablJInE9/LruaJ1NX1f/NVJgL4vPiDKsU4laGvJHBNhdj+F0uVb3

BpjCCAQ8CAQAwZjELMAkGA1UEBhMCREUxEDAOBgNVBAgTB0dlcm1hbnkxETAPBgNVBAcTCEVytPn

SIb3DQEBBAUAA4GBAB6XqdfJvhy7dTHijsHjw+c4ELQFI/TkHBvgp5NaCccQoNwwW9lnIeOikDb2

lwWg56G6LiYfpVBss5+OOW2jXlq9CdNw1KLSDQ+kMtZjdVr8+iQ9gsqxvskCAwEAAaAAMA0GCSqG

YzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAz+hQRsqDWRLvmV4YD5+JaQEXn5qqJeyzkfg2

BgNVBAsTB1Vua25vd24xDzANBgNVBAMTBnRlcHBpPQoU2VPgHID0VnyTPt8r/t4uFk8p1NxjYkC4

bGFuZ2VuMQ8wDQYDVQQKEwZMLVNvZnQxEDAO

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIBpjCCAQ8CAQAwZjELMAkGA1UEBhMCREUxEDAOBgNVBAgTB0dlcm1hbnkxETAPBgNVBAcTCEVy

tPnJhsLOuocsBYAmyM11qiZ5BEVWAnJfZ6kyN/XfT5NFxGIy9Uynz5kODfBwFUgiu98iQKWyMKCa

bGFuZ2VuMQ8wDQYDVQQKEwZMLVNvZnQxEDAOBgNVBAsTB1Vua25vd24xDzANBgNVBAMTBnRlcHBp

6E7Zyl9wkPyVpn1qbnbtXQGAablJInE9/LruaJ1NX1f/NVJgL4vPiDKsU4laGvJHBNhdj+F0uVb3

SIb3DQEBBAUAA4GBAB6XqdfJvhy7dTHijsHjw+c4ELQFI/TkHBvgp5NaCccQoNwwW9lnIeOikDb2

lwWg56G6LiYfpVBss5+OOW2jXlq9CdNw1KLSDQ+kMtZjdVr8+iQ9gsqxvskCAwEAAaAAMA0GCSqG

YzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAz+hQRsqDWRLvmV4YD5+JaQEXn5qqJeyzkfg2

PQoU2VPgHID0VnyTPt8r/t4uFk8p1NxjYkC4

-----END CERTIFICATE-----

Note: Do not include the actual trusted root certificate of the root CA in this file, but only the (signed)
server certificate, plus any necessary intermediate certificates.

Once you have combined the server certificate and the intermediate certificates into a single file,
proceed as described in the next subsection.

5.2.2.2.2 Existing Certificate in Single X.509 Certificate File, Plus Private Key File

Situation: The server certificate is stored in a X.509 certificate file and there are no necessary
intermediate certificates, or all intermediate certificates are stored in the same certificate file as the
server certificate, forming a sequence of X.509 certificates in the file. Also, the private key for the
server certificate is stored in second file.

Solution: You need to convert the combined certificate file and the private key file into a single
PKCS12 file. This can for example be done with the following openssl command (see
https://www.openssl.org/):

openssl pkcs12 –export –in CERTFILE –inkey PRIVKEYFILE –out PKCS12FILE

–name NAME

https://www.openssl.org/
https://www.openssl.org/

LISTSERV Maestro Admin Tech Doc 9 17 Securing Access with HTTPS

with the following replacements:

CERTFILE: The file that contains the server certificate and the intermediate certificates (if any).

PRIVKEYFILE: The file that contains the private key for the server certificate.

PKCS12FILE: The file to which the resulting PKCS12 file shall be written. Usually with a *.p12
extension.

NAME: The name to identify the certificate. Can be any name, but you should choose an informative
name that helps you recognize the certificate at a later time.

Once you have combined the certificate file and private key file into a single PKCS12 file, proceed as
described in the next subsection.

5.2.2.2.3 Existing Certificate in Single PKCS12 File

Situation: The server certificate and all intermediate certificates (if any) and the private key for the
certificate are stored in a single PKCS12 file.

Solution: You need to convert this PKCS12 file into a Java keystore that can be used by LISTSERV
Maestro. This is done with the following command:

keytool –importkeystore –srckeystore PKCS12FILE -srcstoretype PKCS12

-destkeystore KEYFILE

with the following replacements:

PKCS12FILE: The PKCS12 file that contains the certificate and private key.

KEYFILE: The Java keystore file into which the PKCS12 file shall be converted. Specify the name of a
file that does not yet exist, so that a new file is created.

Once you have converted the PKCS12 file into a Java keystore, you now have a keystore that you can
use to enable HTTPS in LISTSERV Maestro. To verify that the keystore is indeed compatible with
LISTSERV Maestro, please check it as described in section “5.2.4 Verify the Certificate Keystore”.

If the keystore is compatible, see section “5.3 Make LISTSERV Maestro aware of the Server
Certificate” on how to use it with LISTSERV Maestro. When using this keystore, you should also check
for any root certificate problems as described in section “5.2.2.3 Check the Root CA Certificate”.

5.2.2.3 Check the Root CA Certificate

If you use an existing server certificate with LISTSERV Maestro as described here in section 5.2.2, no
matter if the certificate was already stored in a Java keystore or was converted into a keystore from a
different format, then this bypasses the automatic validation of the certificate against the CA’s root
certificate (from LISTSERV Maestro’s trusted root certificate keystore) that would happen if a new
certificate were created as described in section 5.2.1.

Or in other words: It is possible to use such an existing certificate without having the CA’s root
certificate in the trusted root certificate keystore of LISTSERV Maestro.

This is fine for the server side, i.e. when LISTSERV Maestro acts as the server for a HTTPS connection.
But it creates problems when LISTSERV Maestro acts both as a HTTPS client and server while
accessing itself (which is necessary for some LISTSERV Maestro features).

LISTSERV Maestro Admin Tech Doc 9 18 Securing Access with HTTPS

As a result, if LISTSERV Maestro does not have the CA’s root certificate in its trusted root certificate
keystore, then these specific LISTSERV Maestro features will fail, sometimes in ways that are not
immediately recognizable as being related to the HTTPS setup.

Therefore, if you are using an existing server certificate (and not creating a new one), then after
enabling the HTTPS access you should check, if there are such root certificate related problems.

In LMA 7.0 and later, with HTTPS enabled, you can check this by logging in as a normal LISTSERV
Maestro user and then selecting the Mail Jobs node in the Maestro explorer. With the node selected,
if the main window pane correctly shows the job list (with “Jobs In Folder” tab, etc.), then there are
no root certificate problems on your system. But if the main window pane remains empty and you
see SSL/encryption related errors in the LUI log file, then this means that your CA’s root certificate is
indeed missing in LISTSERV Maestro.

To fix this, add the root certificate as a new trusted root certificate as described in section 5.2.3. Then
restart LISTSERV Maestro and try again.

5.2.3 Install a New Trusted Root Certificate

IMPORTANT: This step is only required if during the import of a certificate, or when checking the
root CA certificate, it turns out that the root certificate for your CA is not already included in
LISTSERV Maestro’s trusted root certificate keystore.

In this case, install the trusted root certificate as follows:

You should be able to get the root certificate you require from your CA. The certificate must be
stored in a file, either in “DER encoded binary X.509” or “Base-64 encoded X.509 (PEM)” format.

If you have access to such a certificate file, you can import it into the trusted root certificate keystore
by executing the following command:

[maestro_install_folder]/java/bin/keytool –importcert –alias NAME –file

INFILE -keystore [maestro_install_folder]/java/lib/security/cacerts

with the following replacements:

NAME: The name that you want to give the certificate in your keystore. This name is not really
important for anything, except for you to be able to recognize the certificate as what it is at a
later time. Also this name must not already be in use in the keystore.

INFILE: The file in which you have stored the X.509 certificate from your CA.

You will be queried for the password of the default keystore file, which you should have set to
something else than its default “changeit” earlier (see section “3.1 Secure the Trusted Root
Certificate Keystore”).

LISTSERV Maestro Admin Tech Doc 9 19 Securing Access with HTTPS

The command will present the details of the certificate you want to import in a way similar to this:

Owner: OU=For VeriSign authorized testing only. No assurances (C)VS1997,

OU=www.verisign.com/repository/TestCPS Incorp. By Ref. Liab. LTD., O="VeriSign, Inc"

Issuer: OU=For VeriSign authorized testing only. No assurances (C)VS1997,

OU=www.verisign.com/repository/TestCPS Incorp. By Ref. Liab. LTD., O="VeriSign, Inc"

Serial number: 52a9f424da674c9daf4f537852abef6e

Valid from: Sun Jun 07 02:00:00 GMT+02:00 1998 until: Wed Jun 07 01:59:59

GMT+02:00 2006

Certificate fingerprints:

 MD5: 40:06:53:11:FD:B3:3E:88:0A:6F:7D:D1:4E:22:91:87

 SHA1: 93:71:C9:EE:57:09:92:5D:0A:8E:FA:02:0B:E2:F5:E6:98:6C:60:DE

Trust this certificate? [no]:

The presentation contains details about the certificate, but those could have been forged. It also
contains the certificate’s fingerprints, which you can use to verify that the certificate has indeed not
been falsified. For example, if the certificate was mailed to you (thus giving a potential attacker the
possibility to “catch” the mail to you before it reaches you and replacing the certificate therein with
his own certificate for a future “man-in-the-middle” attack), then you might want to call the
responsible person of your CA, to verify the fingerprint of the certificate over the phone. Or check
the CA’s website for the fingerprint of their root certificate.

Once you are sure that the certificate is indeed genuine, you should answer “yes” and ENTER to the
question “Trust this certificate?”.

After you have done this, the certificate is installed as a new trusted root certificate in your trusted
root certificate keystore.

5.2.4 Verify the Certificate Keystore

The certificate keystore file that holds the signed server certificate must conform to certain rules to
be compatible with LISTSERV Maestro:

• The password for the keystore itself and the password for the certificate entry in the
keystore must be the same, otherwise the certificate is not usable by LISTSERV Maestro.

• If the server certificate was not signed directly by the CA’s root certificate, but if it was
instead signed with an intermedia certificate (or possibly even a chain of several
intermediate certificates), then all these intermediate certificates must be included in the
same certificate entry in the keystore:

• There must still be only a single entry for the certificate, but this entry must contain
several certificates: The server certificate itself as the first certificate, followed by all
the intermediate certificates.

• It is not possible to have the intermediate certificates as separate entries in the
keystore, as some features of LISTSERV Maestro will then not work.

Essentially, if you import the server certificate and all intermediate certificates together with
a single import command, from a single file that contains all certificates at once, then this
correctly creates a single entry in the keystore, which contains several certificates. This is
how it is supposed to be.

But if you import the server certificate and the intermediate certificates separately, with
multiple import commands and from multiple files, then you end up with multiple entries in
the keystore file (one for each imported certificate), which is not compatible with LISTSERV
Maestro.

LISTSERV Maestro Admin Tech Doc 9 20 Securing Access with HTTPS

• The actual root certificate of your CA should never be imported explicitly into your keystore
(the one that also holds the server certificate) as a separate keystore entry, but only into
LISTSERV Maestro’s trusted root certificate keystore, if it is not already included in that
keystore. See section “5.2.3 Install a New Trusted Root Certificate” for details.

However, when you import a certificate chain (consisting of your server certificate and the
necessary intermediate certificates, see above) into a keystore entry, then the certificate
chain that is contained in that entry sometimes also contains the CA’s root certificate as the
very last certificate of the chain (even if your imported certificate file did not contain it
explicitly). This is fine and has no negative impact on LISTSERV Maestro.

To display the details of the certificate entry in your keystore, use the following command:

[maestro_install_folder]/java/bin/keytool –list –v –alias NAME -keystore

KEYFILE

with the following replacements:

NAME: The name of the certificate.

KEYFILE: The keystore file.

If you do not remember the name, leave out the “-alias NAME” part. The command will then list
all entries from the keystore (so if your certificate entry is supposed to be the only entry, the result
should actually be identical to what you get when you specify the alias – you can also use this to
verify that there are indeed no unwanted other entries in the keystore).

The output of this command lists all details of the specified certificate entry (or of all entries, if you
do not specify an alias).

For a proper “signed server certificate” entry that is usable by LISTSERV Maestro, the following must
apply:

• The entry type must be PrivateKeyEntry.

• If your certificate was signed directly by the CA’s root certificate (which is actually
uncommon), then the entry should have a certificate chain length of 1 and should contain
only one certificate: Your server certificate.

• If your certificate was signed with intermediate certificates, then the certificate chain length
should be > 1 and the entry should contain all of these certificates: The first certificate should
by your server certificate, followed by the first intermediate certificate, and so on.

• For each certificate, the output shows the certificate fingerprint. If in doubt, you can use this
to validate the authenticity of the certificates, by comparing the fingerprint from the output
to the official fingerprint of the certificate in question (which you would have to obtain from
a reliable and secure separate source).

5.3 Make LISTSERV Maestro aware of the Server Certificate

Once you have the signed server certificate in your keystore file, you now need to make the LISTSERV
Maestro server aware of this certificate, as a last step of securing your server.

You can either secure all bound IP addresses with HTTPS, or only some of them. Each option is
described in its own sub-section below.

LISTSERV Maestro Admin Tech Doc 9 21 Securing Access with HTTPS

In both cases, you need to edit the file “tomcat.ini” on the server that you want to secure with
HTTPS:

 [maestro_install_folder]/conf/tomcat.ini

5.3.1 Secure All IP Addresses with HTTPS

To enable HTTPS on all bound IP addresses, you need to add the following three (or four) entries to
the “tomcat.ini”.

Three required entries:

 SecureServer=true

 KeystoreFile=KEYSTORE_PATH

 KeystorePassword=PASSWORD

And one optional entry:

 CertificateAlias=ALIAS_INFO

Specifying these entries has the effect that HTTPS is enabled on all addresses that LISTSERV Maestro
binds to (=all addresses are secured), using the certificate(s) from the specified keystore.

Reminder: You can configure which addresses LISTSERV Maestro shall bind to (either all addresses or
only a subset) via the “BindAddress” entry. See “LMA Admin Tech Doc 6 – IP Addresses and Ports”
for details.

In the entries above, make the following replacements:

KEYSTORE_PATH: Replace with the absolute path to the keystore file (on Windows including drive
letter) in which the signed certificate can be found. You cannot use a relative path name but
must supply the full path to the file.

 The recommended location for the keystore file is in the
“[maestro_install_folder]/conf/” folder.
If you prefer, you can also store it in a suitable location outside of the LISTSERV Maestro
installation folder hierarchy. But if you want to store it inside of the installation folder, then do
not store it anywhere else than in the “conf” folder, or the file may be deleted during the next
LISTSERV Maestro upgrade.
And remember to keep a backup of the file in a second place (outside of the installation folder),
just in case!

PASSWORD: Replace with the password that you used for the keystore (as explained earlier, you must
have used the same password for the certificate itself too).

Regarding the optional “CertificateAlias” entry: If not present, LISTSERV Maestro automatically
uses the first applicable certificate that it finds in the specified keystore. If you have several
applicable certificates in the keystore, for example old expired versions and a new current version of
the same certificate, and you want to make sure that LISTSERV Maestro picks the correct certificate,
you can specify the certificate that shall be used by including the “CertificateAlias” entry and
replacing the “ALIAS_INFO” part as follows:

ALIAS_INFO : If no “BindAddress” entry is specified, i.e. if LISTSERV Maestro currently binds to all
addresses (all of which are now to be secured), then “ALIAS_INFO” must be replaced with a
single certificate alias. The certificate from the keystore that has this alias will be used for all

LISTSERV Maestro Admin Tech Doc 9 22 Securing Access with HTTPS

HTTPS connections on all bound addresses. Make sure that this certificate contains all host
names that are assigned to all IP addresses.

 If the “BindAddress” entry is actually specified, i.e. if LISTSERV Maestro currently binds only to
the specified list of addresses (all of which are now to be secured), then “ALIAS_INFO” must be
replaced with a comma separated list of certificate aliases in the format specified below. For
each address, the certificate from the keystore that has the specified alias will be used for all
HTTP connections on that address. Make sure that each certificate contains all host names that
are assigned to the IP address that the certificate is used for.

 The replacement for the “ALIAS_INFO” must be specified as a comma-separated list of
IP-address/alias pairs. In each pair, the IP address comes first and the alias second, separated by
a “#” (and the alias name must not contain a comma):

 IP_ADDRESS_1#ALIAS_1,IP_ADDRESS_2#ALIAS2,IP_ADDRESS_3#ALIAS_3,...

 For each IP address that is listed in the “BindAddress” entry, LISTSERV Maestro looks up the
same address in the “CertificateAlias” entry. If an IP-address/alias pair is found for a given
address, then the alias from this pair defines the certificate that is used for this IP address. If an
address is not found in the list, then for this address, LISTSERV Maestro simply picks the first
applicable certificate that it finds in the keystore. In order that this matching between the IP
addresses in the “BindAddress” and “CertificateAlias” entries works correctly, make
sure to type the addresses in exactly the same way, in both entries.

5.3.2 Secure Only Some IP Addresses with HTTPS

To enable HTTPS on only some of the bound IP addresses, you need to add the following entries to
the “tomcat.ini”.

Single required entry:

 SecureServer=SECURED_ADDRESSES

Two required entries for each secured IP address:

 KeystoreFile-IP_ADDRESS=KEYSTORE_PATH

 KeystorePassword-IP_ADDRESS=PASSWORD

One optional entry for each secured IP address:

 CertificateAlias-IP_ADDRESS=ALIAS

Note, that the first entry “SecureServer” must appear only once, with the following replacement:

SECURED_ADDRESSES: Replace with a comma-separated list of all IP addresses that are to be
secured, for example:

 192.168.0.15,192.168.0.16,192.168.0.43

 You can specify both IPv4 and IPv6 addresses (also mixed), but IPv6 addresses must be enclosed
in brackets “[“ and “]”. Each address can also specify an individual port. An IPv4 address with
port is specified as address:port, an IPv6 address with port is specified as [address]:port.

 Of all the addresses that LISTSERV Maestro binds to, all addresses that appear in this
“SecureServer” entry are secured, all other addresses remain unsecure. If the
“SecureServer” entry contains an address that LISTSERV Maestro does not actually bind to,
then this address is ignored. Or in other words: If an address is not bound at all, it does not
make sense to secure it either.

LISTSERV Maestro Admin Tech Doc 9 23 Securing Access with HTTPS

 Reminder: You can configure which addresses LISTSERV Maestro shall bind to (either all
addresses or only a subset) via the “BindAddress” entry. See “Admin Tech Doc 6 – IP
Addresses and Ports” for details.

The other two (or three) entries must appear once for each IP address that is listed in the
“SECURED_ADDRESSES” list (see above), with the following replacement:

IP_ADDRESS: This replacement happens in the key of all two (or three) entries. This tells LISTSERV
Maestro which IP address the entry references. Replace this part with the IP address in question
(must be one of the addresses from the “SECURED_ADDRESSES” list). Can be an IPv4 or IPv6
address. IPv6 addresses must not be enclosed in brackets.

KEYSTORE_PATH: Replace with the absolute path to the keystore file (on Windows including drive
letter) in which the signed certificate for this IP address can be found. You cannot use a relative
path name but must supply the full path to the file.

 The recommended location for the keystore file is in the
“[maestro_install_folder]/conf/” folder.
If you prefer, you can also store it in a suitable location outside of the LISTSERV Maestro
installation folder hierarchy. But if you want to store it inside of the installation folder, then do
not store it anywhere else than in the “conf” folder, or the file may be deleted during the next
LISTSERV Maestro upgrade.
And remember to keep a backup of the file in a second place (outside of the installation folder),
just in case!

PASSWORD: Replace with the password that you used for the keystore (as explained earlier, you must
have used the same password for the certificate itself too).

Regarding the optional “CertificateAlias-IP_ADDRESS” entry: If not present for a secured IP
address, LISTSERV Maestro automatically uses the first applicable certificate for this IP address that it
finds in the specified keystore. If you have several applicable certificates in the keystore, for example
old expired versions and a new current version of the same certificate, and you want to make sure
that LISTSERV Maestro picks the correct certificate, you can specify the certificate that shall be used
by including the “CertificateAlias-IP_ADDRESS” entry and replacing the “ALIAS” part as
follows:

ALIAS: Replace with the alias of the certificate that shall be used for all HTTPS connections on the
given IP address. Make sure that this certificate contains all host names that are assigned to the
IP address.

5.3.3 Define the HTTPS Port

The HTTPS port that is used for a secured IP address is defined in the following hierarchical order:

1. Any address that is listed in the “SecureServer” entry together with its own specific port
uses this port as its HTTPS port. For all other addresses, the next rule applies:

2. Any address that does not yet have its HTTPS port defined by the previous rule and that is
listed in the “BindAddress” entry together with its own specific port, uses this port as its
HTTPS port. For all other addresses, the next rule applies:

3. Any address that does not yet have its HTTPS port defined by the previous rules, uses the
port that is defined by the “SecurePort” entry, unless that entry is not present, in which
case the default port 443 is used.

LISTSERV Maestro Admin Tech Doc 9 24 Securing Access with HTTPS

5.3.4 Configure the Access URLs

Once all configuration entries are specified in the “tomcat.ini”, LISTSERV Maestro is prepared for
HTTPS access. Start (or restart) LISTSERV Maestro to make the changes effective.

You can access LISTSERV Maestro normally, only now you need to use “https://” URLs instead of the
standard “http://”, if the access URL uses a host name that is assigned to one of the secured IP
addresses.

IMPORTANT: After HTTPS access is enabled, you will also have to adjust the LISTSERV Maestro access
URLs in the HUB, so that these URLs now specify the “https://” protocol, and no longer the default
“http://” protocol.

If you do not do this, then if you use the new “https://” protocol to access the LUI login page, even
though the login page is displayed fine, you will not be able to login (neither with the admin account
nor with any of the user accounts).

To change the access URLs, login to the HUB using the non-standard login URL
“https://YOURSERVER/hub/?loginOverride” and login with the admin account. Then change
all access URLs that are now affected by HTTPS.

This can apply to any of the following: “LUI Access URL for Users”, “LUI Access URL for Admin”, “HUB
Access URL for Admin”, “URL for Recipients, Subscribers and Others”, and even to the “Tracking
URL”, depending on which of the components you have secured with HTTPS and which not.

The defaults for these URLs are defined on the Default URL Settings page (Main Menu → LUI
Settings → Application Default Settings → URL Settings) but these defaults can also be overridden
on account or group level. So if after the change to HTTPS a given account is no longer able to login,
check the access URL settings of that account to make sure that HTTPS is specified in all applicable
access URLs.

5.3.5 Redirect from HTTP to HTTPs

No matter if you secure all addresses that LISTSERV Maestro binds to (with “SecureServer=true”)
or only some of the addresses (by specifying a list of addresses in the “SecureServer” entry), the
result is always, that on all secured addresses, LISTSERV Maestro will now only accept access with
the secure HTTPS protocol, on the specified secure HTTPS port(s).

This means that if a user mistakenly tries to access LISTSERV Maestro with the normal HTTP protocol
in the URL, then this user will not be able to make a connection.

This may be the desired behavior, but in many situations this is not desired, because users are prone
to forget the additional “s” in the protocol when they enter the access URL. And then they get
confused that they are unable to access LISTSERV Maestro, as they do not realize their small mistake.
This is true especially in situations where LISTSERV Maestro used to be accessed with the normal
HTTP protocol and was only recently switched to the secure HTTPS protocol, and now all old HTTP
bookmarks that the users may still have suddenly cease to function.

To avoid this kind of confusion, you can configure LISTERV Maestro to also accept normal HTTP
requests, on the normal HTTP port(s), and automatically redirect these requests to use the HTTPS
protocol instead.

You do this by adding the following entry to the tomcat.ini file:

 HttpToHttpsAutoRedirect=IP_ADDRESS_LIST

where IP_ADDRESS_LIST must be replaced with a comma separated list of IP addresses. You can
specify both IPv4 and/or IPv6 addresses. Each IP address can optionally also specify a port. An IPv4
address with port is specified as address:port, an IPv6 address with port is specified as

LISTSERV Maestro Admin Tech Doc 9 25 Securing Access with HTTPS

[address]:port. If no port is specified for an address, the default HTTP port as defined by the
“Port” entry will be assumed.

LISTSERV Maestro then accepts normal HTTP connections on each address/port combination in this
list but redirects each HTTP request that it receives on them and converts it into a HTTPS request
that goes to the same IP address but with the secure HTTPS port that was configured for this address.

In this list of addresses, you can also use the keyword “all” instead of an IP address, either with or
without a specific port (the latter separated with a colon “:”). This has the effect that LISTSERV
Maestro accepts normal HTTP connections on all secured addresses (on the given port). I.e. the
keyword is a shortcut for spelling out all secured addresses explicitly.

Examples:

1. HttpToHttpsAutoRedirect=all

In addition to accepting secure HTTPS requests, LISTSERV Maestro will now also accept
normal HTTP requests on all secured IP addresses, using the default HTTP port as configured
by the “Port” entry, and will redirect these HTTP requests to HTTPS.

2. HttpToHttpsAutoRedirect=all,all:8080

Same as before, but HTTP requests on all secured IP addresses will now be accepted both on
the default HTTP port as configured by the “Port” entry and on the specific port “8080”.

3. HttpToHttpsAutoRedirect=192.168.1.1,192.168.15.3

Same as the first example, but HTTP requests (on the default HTTP port) will not be accepted
on all secured IP addresses, but only on the two addresses specified.

4. HttpToHttpsAutoRedirect=192.168.1.1,192.168.1.1:8080,192.168.15.3

Same as the previous example, but now the IP address 192.168.1.1 will accept HTTP
requests both on the default HTTP port and the explicitly specified port 8080.

5. HttpToHttpsAutoRedirect=all,192.168.1.1:8081,192.168.15.3:8082

HTTP request are now accepted on all secured IP addresses with the default HTTP port and
on address 192.168.1.1 additionally with port 8081 and on address 192.168.15.3
additionally with port 8082.

Note: If you specify an IP address that is not actually secured with HTTPS, or if you specify an
address/port combination that is not bound at all, then this address (or address/port combination) is
ignored. Similarly, if you specify an address with a port where the same port is already in use as the
secure HTTPS port on this IP address, then this address/port combination is also ignored.

5.4 Refresh an Expired Certificate

When you purchase the signed certificate from your CA, this certificate will be valid for a limited
period only (usually a year, or several years). Once the certificate expires, users will no longer be able
to access LISTSERV Maestro, as the users’ browsers will reject the connection because of the expired
certificate.

It is therefore important that you keep the expiration date of your certificate in mind and install a
freshly signed new version of the certificate well in time before the old certificate expires.

Note: This is one of the reasons why it is recommended to let LISTSERV Maestro manage the
certificates automatically (see section “4 Let LISTSERV Maestro Manage the Certificates”). Because
then LISTSERV Maestro will refresh the certificate for you, automatically.

LISTSERV Maestro Admin Tech Doc 9 26 Securing Access with HTTPS

To get a fresh certificate, you will need to send a new certificate signing request (CSR) to your CA and
then install the freshly signed version of the certificate in LISTSERV Maestro.

For this you have two options: Create a new certificate and submit a new CSR for this new certificate,
or re-use the existing certificate, and simply submit a new CSR for it. Both options are described in
more detail in the following sub-sections.

5.4.1 Create a New Certificate

To create a new certificate that is supposed to take the place of the soon-to-be-expired old
certificate, you need to go through the same procedure as you did when you created the original
certificate: First create a new unsigned certificate, then create a CSR for this certificate and submit it
to your CA, then import the signed certificate that you get back from the CA.

For this, proceed as described in these sections:

1. See section “5.2.1.1 Create an Unsigned Server Certificate”

Important: Either create the new certificate in a new keystore file, or create it in the same
keystore file, but with a different alias than the existing certificate.

2. See section “5.2.1.2 Perform a Certificate Signing Request (CSR)”

Important: Remember to specify the correct keystore file and alias for the new certificate!

3. See section “5.2.1.3 Install the Signed Server Certificate”

Important: Again, remember to specify the correct keystore file and alias for the new
certificate!

Once you have installed the new signed certificate in your keystore file, you will need to make some
changes to the tomcat.ini to make LISTSERV Maestro aware of the new certificate:

• If you created the new certificate in a new keystore file, then it is important that you adjust
the entries in the tomcat.ini to point to this new keystore file, with the correct password
for that file.

• If you created the new certificate in the same keystore file, but with a new alias, then it is
important that you adjust the CertificateAlias entry in the tomcat.ini (or add such
an entry if it does not already exist), so that it points to the correct new alias.

See section “5.3 Make LISTSERV Maestro aware of the Server Certificate” for more details about the
tomcat.ini.

After you have adjusted the tomcat.ini, restart LISTSERV Maestro to make it aware of the
changes.

5.4.2 Re-use the Existing Certificate

Security Issue: By re-using the existing certificate, you also re-use the certificate’s private key. The
main benefit of having a certificate with limited duration is to reduce the damage if your private key
is leaked. If you switch to a new private key every now and then (i.e. when the certificate expires),
then the old private key will become useless to any attackers who somehow got hold of it in the past,
i.e. any further attack attempts with this old private key will no longer work.

It is therefore often recommended, not to re-use an existing certificate when it expires, but instead
create a new one to take its place, as described in section “5.4.1 Create a New Certificate” above.

In certain cases it may however be fine to re-use a certificate (maybe for a limited time) and this sub-
section describes how to do this in LISTSERV Maestro.

LISTSERV Maestro Admin Tech Doc 9 27 Securing Access with HTTPS

To re-use an existing certificate, you simply submit a CSR for this certificate to your CA:

• Some CAs store the old CSRs and can re-use them to freshly sign the certificate. If that is the
case, then you do not even need to submit the CSR to the CA, but you can simply ask the CA
to use the CSR they already have to freshly sign the certificate.

• If you need to submit a new CSR to the CA but you yourself still have a copy of the CSR file
that you submitted last time, then you can usually simply submit this same CSR again to get
the freshly signed certificate.

• If you no longer have the CSR or need a new CSR, create one for the existing certificate (in
the existing keystore) as described in section “5.2.1.2 Perform a Certificate Signing Request
(CSR)”.

Once you get the freshly signed certificate back from your CA, you need to install it in LISTSERV
Maestro as described in section “5.2.1.3 Install the Signed Server Certificate”.

When doing so, use the existing keystore file (make a backup copy of the file before changing it), and
supply the same certificate alias as for the old version of the certificate, to overwrite it in the
keystore.

Then restart LISTSERV Maestro to make it aware of the updated certificate.

6 Support for HTTP Strict Transport Security (HSTS)

It is outside of the scope of this document to describe what HSTS is and how it works. Please inform
yourself via other sources about HSTS. This section is only meant to describe how to enable HSTS in
LISTSERV Maestro, in case that you decide that you want to use this feature.

Some things to keep in mind:

• Be sure that you understand HSTS and know what you are doing before enabling HSTS!

• In LISTSERV Maestro, HSTS can only be enabled for the whole LISTSERV Maestro server.

That means that it is not possible to enable HSTS only for some host names of the server and
not for others. Once it is enabled, it applies to all HTTPS connections that are served by this
LISTSERV Maestro instance.

Consequently that also means, that if all LISTSERV Maestro components are installed on the
same server, then HSTS is either enabled or disabled for all of these components (and all
their host names). But if the LISTSERV Maestro components are distributed over several
servers, then HSTS must be enabled/disabled individually for each of these servers.

To enable HSTS for a LISTSERV Maestro instance, include the following setting in the tomcat.ini:

HSTSEnabled=true

If this setting is not present in the tomcat.ini (or has a value other than “true”), then HSTS is
disabled. With HSTS enabled, the following optional tomcat.ini settings can also be used (they are
ignored if HSTS is disabled):

HSTSMaxAge=MAX_AGE_IN_SECONDS

HSTSIncludeSubDomains=true

HSTSPreload=true

where you need to replace MAX_AGE_IN_SECONDS with the desired max age, expressed as the
number of seconds. The default is 31536000, i.e. 1 year. For the other two optional settings, the

LISTSERV Maestro Admin Tech Doc 9 28 Securing Access with HTTPS

default is “false”, i.e. if you do not specify one of these settings, or set it to a value other than
“true”, then the corresponding option will not be enabled in the HSTS header.

As usual with the tomcat.ini, any changes to these settings only become effective once you restart
the corresponding LISTSERV Maestro instance.

7 Supported SSL/TLS Ciphers

The SSLCiphers entry in the tomcat.ini file defines the list of ciphers that the LISTSERV Maestro
server supports for HTTPS connections. Connecting clients must use one of these ciphers to be able
to connect via HTTPS.

The value for this entry is a comma separated list that can contain the alias DefaultStandard
and/or the alias DefaultStrong and/or any of the individual cipher names as listed in the two
tables below, in any combination. I.e. the two aliases can also be combined with each other or with
any of the cipher names.

The alias DefaultStandard stands for all ciphers that are shown as “included in alias
DefaultStandard” in the first table below. Similarly, the alias DefaultStrong stands for all
ciphers that are shown as “included in alias DefaultStrong” in the second table below.

If left out, the SSLCiphers entry defaults to SSLCiphers=DefaultStrong,DefaultStandard.

LISTSERV Maestro Admin Tech Doc 9 29 Securing Access with HTTPS

The following low and standard strength ciphers (up to 168-bit) are supported by LISTSERV Maestro:

Cipher Name: Included in alias
DefaultStandard

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA Yes

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

SSL_DH_anon_WITH_DES_CBC_SHA

SSL_DH_anon_WITH_RC4_128_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_WITH_3DES_EDE_CBC_SHA Yes

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA Yes

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 Yes

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 Yes

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DH_anon_WITH_AES_128_CBC_SHA

TLS_DH_anon_WITH_AES_128_CBC_SHA256

TLS_DH_anon_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA Yes

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA Yes

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 Yes

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 Yes

TLS_ECDHE_ECDSA_WITH_NULL_SHA

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA Yes

LISTSERV Maestro Admin Tech Doc 9 30 Securing Access with HTTPS

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA Yes

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 Yes

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 Yes

TLS_ECDHE_RSA_WITH_NULL_SHA

TLS_ECDHE_RSA_WITH_RC4_128_SHA

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA Yes

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA Yes

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 Yes

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 Yes

TLS_ECDH_ECDSA_WITH_NULL_SHA

TLS_ECDH_ECDSA_WITH_RC4_128_SHA

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA Yes

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA Yes

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 Yes

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 Yes

TLS_ECDH_RSA_WITH_NULL_SHA

TLS_ECDH_RSA_WITH_RC4_128_SHA

TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA

TLS_ECDH_anon_WITH_AES_128_CBC_SHA

TLS_ECDH_anon_WITH_NULL_SHA

TLS_ECDH_anon_WITH_RC4_128_SHA

TLS_EMPTY_RENEGOTIATION_INFO_SCSV

TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5

TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA

TLS_KRB5_EXPORT_WITH_RC4_40_MD5

TLS_KRB5_EXPORT_WITH_RC4_40_SHA

TLS_KRB5_WITH_3DES_EDE_CBC_MD5

TLS_KRB5_WITH_3DES_EDE_CBC_SHA

TLS_KRB5_WITH_DES_CBC_MD5

TLS_KRB5_WITH_DES_CBC_SHA

TLS_KRB5_WITH_RC4_128_MD5

TLS_KRB5_WITH_RC4_128_SHA

TLS_RSA_WITH_AES_128_CBC_SHA Yes

TLS_RSA_WITH_AES_128_CBC_SHA256 Yes

TLS_RSA_WITH_AES_128_GCM_SHA256 Yes

TLS_RSA_WITH_NULL_SHA256

LISTSERV Maestro Admin Tech Doc 9 31 Securing Access with HTTPS

In addition to the above “weaker” ciphers, the following stronger 256-bit encryption ciphers are also
supported by LISTSERV Maestro.

Note: These strong ciphers are appropriate for most countries, but some countries restrict the usage
of strong encryption. Make sure your country allows for strong encryption before using these
ciphers. Remember that these ciphers are enabled by default if the SSLCiphers entry is not present
in tomcat.ini. So if these ciphers are not allowed in your country, make sure to provide an
SSLCiphers entry that does not include them.

Cipher Name: Included in alias
DefaultStrong

TLS_DHE_DSS_WITH_AES_256_CBC_SHA Yes

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 Yes

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 Yes

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_DH_anon_WITH_AES_256_CBC_SHA

TLS_DH_anon_WITH_AES_256_CBC_SHA256

TLS_DH_anon_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA Yes

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 Yes

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 Yes

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA Yes

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 Yes

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 Yes

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA Yes

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 Yes

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 Yes

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA Yes

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 Yes

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 Yes

TLS_ECDH_anon_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA Yes

TLS_RSA_WITH_AES_256_CBC_SHA256 Yes

TLS_RSA_WITH_AES_256_GCM_SHA384 Yes

LISTSERV Maestro Admin Tech Doc 9 32 Securing Access with HTTPS

8 Minimum TLS Protocol Version

The SSLMinimumTLSVersion entry in the tomcat.ini file defines the lowest TLS (or SSL) protocol
version that the LISTSERV Maestro server supports for HTTPS connections. Connecting clients must
use at least the specified protocol version, or any of the higher (later) supported versions, to be able
to connect via HTTPS.

The highest supported protocol version is “TLS version 1.2”, the lowest supported version is “SSL
version 3”, so the following values are allowed for the SSLMinimumTLSVersion entry (in
descending version order):

TLSv1.2

TLSv1.1

TLSv1

SSLv3

Note, that TLS 1.1, TLS 1 and SSL 3 are viewed as outdated and no longer secure. It is therefore
recommended to use at least TLS 1.2. All modern browsers supports this newer TLS version, so you
should only set the minimum supported TLS version of LISTSERV Maestro to a lower version, if you
have a very good reason.

If left out, the SSLMinimumTLSVersion entry defaults to SSLMinimumTLSVersion=TLSv1.2.1

1 This default of TLSv1.2 applies to LISTSERV Maestro 9.0-7 and later. In older versions (LMA 9.0-6 and before) the default

was TLSv1.

